UJI ANOVA


NAMA       :   ADAM JALUS
NPM           :   17 630 049

UJI ANOVA ( UJI F )
·         Pengertian ANOVA
Anova adalah sebuah analisis statistik yang menguji perbedaan rerata antar grup. Grup disini bisa berarti kelompok atau jenis perlakuan. Anova ditemukan dan diperkenalkan oleh seorang ahli statistik bernama Ronald Fisher.
Anova merupakan singkatan dari Analysis of variance. Merupakan prosedur uji statistik yang mirip dengan t test. Namun kelebihan dari Anova adalah dapat menguji perbedaan lebih dari dua kelompok. Berbeda dengan independent sample t test yang hanya bisa menguji perbedaan rerata dari dua kelompok saja.
Dalam kesempatan bahasan kali ini, statistikian akan menjelaskannya secara singkat namun dengan penuh harapan agar para pembaca mudah memahami dan mempraktekkannya dalam penelitian di lapangan nantinya.
Kegunaan Anova
Anova digunakan sebagai alat analisis untuk menguji hipotesis penelitian yang mana menilai adakah perbedaan rerata antara kelompok. Hasil akhir dari analisis ANOVA adalah nilai F test atau F hitung. Nilai F Hitung ini yang nantinya akan dibandingkan dengan nilai pada tabel f. Jika nilai f hitung lebih dari f tabel, maka dapat disimpulkan bahwa menerima H1 dan menolak H0 atau yang berarti ada perbedaan bermakna rerata pada semua kelompok.
Analisis ANOVA sering digunakan pada penelitian eksperimen dimana terdapat beberapa perlakuan. Peneliti ingin menguji, apakah ada perbedaan bermakna antar perlakuan tersebut.
·         Contoh ANOVA
Contohnya adalah seorang peneliti ingin menilai adakah perbedaan model pembelajaran A, B dan C terhadap hasil pembelajaran mata pelajaran fisika pada kelas 6. Dimana dalam penelitian tersebut, kelas 6A diberi perlakuan A, kelas 6B diberi perlakuan B dan kelas 6C diberi perlakuan C. Setelah adanya perlakuan selama satu semester, kemudian dibandingkan hasil belajar semua kelas 6 (A, B dan C). Masing-masing kelas jumlahnya berkisar antara 40 sampai dengan 50 siswa.
Hasil akhir yang didapatkan adalah nilai f hitung. Nilai tersebut dibandingkan dengan nilai dalam tabel f pada derajat kebebasan tertentu (degree of freedom). Jika F hitung > F Tabel, maka disimpulkan bahwa menerima H1 atau yang berarti ada perbedaan secara nyata atau signifikan hasil ujian siswa antar perlakuan model pembelajaran.
·         Anova Dalam Regresi Linear
Kadang para pembaca cukup dibingungkan oleh adanya tabel ANOVA pada hasil analisis regresi linear. Tentunya jika anda mengerti maksud sesungguhnya dari uji yang satu ini, maka anda tidak akan bingung lagi. Anova dalam perhitungannya membandingkan nilai mean square dan hasilnya adalah menilai apakah model prediksi linear tidak berbeda nyata dengan nilai koefisien estimasi dan standar error.
·         Ciri-ciri ANOVA
Ciri khasnya adalah adanya satu atau lebih variabel bebas sebagai faktor penyebab dan satu atau lebih variabel response sebagai akibat atau efek dari adanya faktor. Contoh penelitian yang dapat menggambarkan penjelasan ini: “Adakah pengaruh jenis bahan bakar terhadap umur thorax mesin.” Dari judul tersebut jelas sekali bahwa bahan bakar adalah faktor penyebab sedangkan umur thorax mesin adalah akibat atau efek dari adanya perlakuan faktor. Ciri lainnya adalah variabel response berskala data rasio atau interval (numerik atau kuantitatif).
Anova merupakan salah satu dari berbagai jenis uji parametris, karena mensyaratkan adanya distribusi normal pada variabel terikat per perlakuan atau distribusi normal pada residual. Syarat normalitas ini mengasumsikan bahwa sample diambil secara acak dan dapat mewakili keseluruhan populasi agar hasil penelitian dapat digunakan sebagai generalisasi. Namun keunikannya, uji ini dapat dikatakan relatif robust atau kebal terhadap adanya asumsi tersebut.
CONTOH SOAL UJI ANOVA SATU ARAH
Contoh Kasus:
Suatu penelitian dilakukan untuk mengetahui apakah terdapat pengaruh perbedaan kartu kredit terhadap penggunaannya. Data di bawah ini  adalah jumlah uang yang dibelanjakan ibu rumah tangga menggunakan kartu kredit (dalam $). Empat jenis kartu kredit dibandingkan:
Jumlah yang dibelanjakan ($)
ASTRA
BCA
CITI
AMEX
8
12
19
13
7
11
20
12
10
16
15
14
19
10
18
15
11
12
19
Ujilah dengan α = 0.05, apakah terdapat pengaruh perbedaan kartu kredit pada penggunaannya?
Penyelesaian:
Jumlah yang dibelanjakan ($)
ASTRA
BCA
CITI
AMEX
8
12
19
13
7
11
20
12
10
16
15
14
19
10
18
15
11
12
19
T = 55
T = 61
T = 91
T = 54
n = 5
n = 5
n = 5
n = 4
=11
= 12.2
=18.2
= 13.5
Dari table di atas dapat dihitung:
Jumlah keseluruhan nilai: T = T1 + T2 + T3 + T4 = 55 + 61 + 91 + 54 = 261
SSE = SST – SSB = 279.658 – 149.08  =  130.6
Tabel ANOVA yang dibentuk:
Sumber
Keragaman
Derajat Bebas
(Degree of Freedom)
Jumlah Kuadrat
(Sum Square)
Rata-rata Kuadrat
(Mean Square)
Fhitung
Ftabel (lihat Tabel)
Antar Grup
v1 = 4–1= 3
149.08
  149.08/ 3 = 49.69

5.71

F(3, 15)= 3.29
Dalam Grup (error)

v2 = 19–4= 15

130.6

130.6/ 15 = 8.71
Total
       18
        279.68
Pengujian Hipotesis:
H0 : μ1 =  μ2  =  …  =  μk (semua sama)
H1 : Tidak semuanya sama (minimal sepasang berbeda, μi ≠  μuntuk i ≠ j)
Statistik uji = Fhitung =  5.71     ( Lihat tabel F disini)                
Keputusan: Tolak H0 , terima H1 karena  Fhitung > Ftabel
Kesimpulan: Terdapat perbedaan pengaruh kartu kredit terhadap penggunaan uang yang dibelanjakan oleh ibu rumah tangga



Komentar

  1. Sebutkan dan Jelaskan manfaat mempelajari uji anova dalam penelitian??

    BalasHapus
  2. Sebutkan dan Jelaskan manfaat mempelajari uji anova dalam penelitian??

    BalasHapus
  3. Itu angka 11-12,2-18,2-dan 13,5 dari mana hasilnya?

    BalasHapus

Posting Komentar

Postingan populer dari blog ini

CONTOH UJI CHI KUADRAT (MID STATISTIK)

CONTOH UJI BEDA RATA-RATA (MID STATISTIK)